Three-dimensional porous graphene materials for environmental applications
نویسندگان
چکیده
Copyright © Korean Carbon Society http://carbonlett.org Abstract Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.
منابع مشابه
Three-dimensional porous graphene networks expand graphene-based electronic device applications.
In recent years, there has been increasing demand for 3D porous graphene structures with excellent 2D characteristics and great potential. As one avenue, several approaches for fabricating 3D porous graphene network structures have been proposed to realize multi-functional graphene materials with 2D graphene structures. Herein, we overview characteristics of 3D porous graphene for applications ...
متن کاملThe mechanics and design of a lightweight three-dimensional graphene assembly
Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of t...
متن کاملThree-dimensional graphene-based composites for energy applications.
Three-dimensional (3D) graphene-based composites have drawn increasing attention for energy applications due to their unique structures and properties. By combining the merits of 3D graphene (3DG), e.g., a porous and interconnected network, a high electrical conductivity, a large accessible surface area, and excellent mechanical strength and thermal stability, with the high chemical/electrochem...
متن کاملCompressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance.
This work presents a new class of porous graphene particles with a three-dimensional microscale network and an ultrahigh specific surface area (2590 m(2) g(-1)), which is obtained by the KOH activation of a compact graphene hydrogel. As supercapacitor electrodes, such porous graphene particles show high compressibility and little capacitance loss when subjected to a compressive force up to 40 M...
متن کاملThree-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications
*Correspondence: Peng Chen, Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive 637457, Singapore e-mail: [email protected] Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs) and graphene materials have been widely used to improve energy storage and conversion. I...
متن کامل